THE ROLE OF SOD2 GENE ALA16VAL POLYMORPHISM IN THE DEVELOPMENT OF MYELOPROLIFERATIVE NEOPLASIA IN KHOREZM REGION

FULL TEXT:

Abstract

Objective: To assess the influence of allelic and genotypic variants of the Ala16Val polymorphism in the SOD2 gene on the development of myeloproliferative neoplasms (MPNs).


Materials and methods:  A study was conducted on 110 patients with clinically and genetically confirmed Ph-positive and Ph-negative MPNs to investigate the role of the SOD2 gene Ala16Val polymorphism in the development and prognosis of MPN clinical course. Of these, 34 patients (CML – 26, ET – 7, PMF – 1) resided in unfavorable regions of the Khorezm region (Group I) and 76 patients (CML – 40, ET – 24, PMF – 10, PV – 2) resided in relatively favorable regions of the republic, including the Khorezm region (Group II).  DNA samples from 105 unrelated ethnically Uzbek healthy controls were used.  (Note:  Abbreviations like CML, ET, PMF, PV need to be defined in the methods section or in a table).


Results: Statistical data suggest a potential association between the alleles (χ²=3.9; p=0.05) of the Ala16Val polymorphism in the SOD2 gene and the development of myeloproliferative neoplasms. The Ala allele plays a protective role in the development of MPNs, while the Val allele plays a pathogenic role; the presence of the Val allele indicates an increased risk of the disease. The mutant homozygous Val/Val genotype increases the risk of developing MPNs in patients from unfavorable regions more than twofold (χ²=4.0; p=0.05; =2.4; 95% CI: 1.02-5.57).


The p-values are borderline significant.  The confidence intervals for the relative risk and odds ratio are quite wide, suggesting a need for larger sample sizes to confirm these findings.  The abbreviations for the MPN subtypes should be clearly defined (e.g., CML = Chronic Myelogenous Leukemia, ET = Essential Thrombocythemia, PMF = Primary Myelofibrosis, PV = Polycythemia Vera).

About the Authors

List of references

Misawa K, Yasuda H, Araki M, Ochiai T, Morishita S, Shirane S, Edahiro Y, Gotoh A, Ohsaka A, Komatsu N. Mutational subtypes of JAK2 and CALR correlate with different clinical features in Japanese patients with myeloproliferative neoplasms. Int J Hematol. 2018 Jun;107(6):673-680. doi: 10.1007/s12185-018-2421-7. Epub 2018 Feb 20. PMID: 29464483.

Broz M, Furlan V, Lešnik S, Jukič M, Bren U. The Effect of the Ala16Val Mutation on the Secondary Structure of the Manganese Superoxide Dismutase Mitochondrial Targeting Sequence. Antioxidants (Basel). 2022 Nov 27;11(12):2348. doi: 10.3390/antiox11122348. PMID: 36552556; PMCID: PMC9774195.

Guo H, Chen X, Tian R, Chang J, Li J, Tan Y, Xu Z, Ren F, Zhao J, Pan J, Zhang N, Wang X, He J, Yang W, Wang H. Frequencies, Laboratory Features, and Granulocyte Activation in Chinese Patients with CALR-Mutated Myeloproliferative Neoplasms. PLoS One. 2015 Sep 16;10(9):e0138250. doi: 10.1371/journal.pone.0138250. Erratum in: PLoS One. 2015 Oct 15;10(10):e0141173. doi: 10.1371/journal.pone.0141173. PMID: 26375990; PMCID: PMC4574314.

Ha JS, Kim YK. Calreticulin exon 9 mutations in myeloproliferative neoplasms. Ann Lab Med. 2015 Jan;35(1):22-7. doi: 10.3343/alm.2015.35.1.22. Epub 2014 Dec 8. PMID: 25553276; PMCID: PMC4272961.

Ahmed RZ, Rashid M, Ahmed N, Nadeem M, Shamsi TS. Coexisting JAK2V617F and CALR Exon 9 Mutations in Myeloproliferative Neoplasms - Do They Designate a New Subtype? Asian Pac J Cancer Prev. 2016;17(3):923-6. doi: 10.7314/apjcp.2016.17.3.923. PMID: 27039813.

Li MY, Chao HY, Sun AN, Qiu HY, Jin ZM, Tang XW, Han Y, Fu CC, Chen SN, Wu DP. [Clinical significance of JAK2、CALR and MPL gene mutations in 1 648 Philadelphia chromosome negative myeloproliferative neoplasms patients from a single center]. Zhonghua Xue Ye Xue Za Zhi. 2017 Apr 14;38(4):295-300. Chinese. doi: 10.3760/cma.j.issn.0253-2727.2017.04.007. PMID: 28468090; PMCID: PMC7342731.

Guo H, Chen X, Tian R, Chang J, Li J, Tan Y, Xu Z, Ren F, Zhao J, Pan J, Zhang N, Wang X, He J, Yang W, Wang H. Correction: Frequencies, Laboratory Features, and Granulocyte Activation in Chinese Patients with CALR-Mutated Myeloproliferative Neoplasms. PLoS One. 2015 Oct 15;10(10):e0141173. doi: 10.1371/journal.pone.0141173. Erratum for: PLoS One. 2015 Sep 16;10(9):e0138250. doi: 10.1371/journal.pone.0138250. PMID: 26469690; PMCID: PMC4607294.

Trifa A.P., Lighezan D.L., Jucan C., Tripon F., Arbore D.R., Bojan A., Gligor-Popa Ș., Pop R.M., Dima D., Bănescu C. SH2B3 (LNK) Rs3184504 Polymorphism Is Correlated with JAK2 V617F-Positive Myeloproliferative Neoplasms. Rev. Romana Med. Lab. 2020;28:267–277. doi: 10.2478/rrlm-2020-0025.

Vanni D, Borsani O, Nannya Y, Sant'Antonio E, Trotti C, Casetti IC, Pietra D, Gallì A, Zibellini S, Ferretti VV, Malcovati L, Ogawa S, Arcaini L, Rumi E. Haematological malignancies in relatives of patients affected with myeloproliferative neoplasms. EJHaem. 2022 Mar 24;3(2):475-479. doi: 10.1002/jha2.425. PMID: 35846061; PMCID: PMC9176120.

Coltro G, Loscocco GG, Vannucchi AM. Classical Philadelphia-negative myeloproliferative neoplasms (MPNs): A continuum of different disease entities. Int Rev Cell Mol Biol. 2021;365:1-69. doi: 10.1016/bs.ircmb.2021.09.001. Epub 2021 Sep 28. PMID: 34756241.

Meyer SC, Drexler B, Skoda RC. Myeloproliferative Neoplasien: Update zu Diagnostik und Therapie [Myeloproliferative neoplasms - Update on diagnosis and treatment]. Ther Umsch. 2019;76(9):487-495. German. doi: 10.1024/0040-5930/a001128. PMID: 32157965.

Zeeh FC, Meyer SC. Current Concepts of Pathogenesis and Treatment of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms. Hamostaseologie. 2021 Jun;41(3):197-205. doi: 10.1055/a-1447-6667. Epub 2021 Jun 30. PMID: 34192778.

Tuyet Kristensen D, Kisbye Øvlisen A, Hjort Kyneb Jakobsen L, Tang Severinsen M, Hannig LH, Starklint J, Hagemann Hilsøe M, Pommer Vallentin A, Brabrand M, Hasselbalch HC, El-Galaly TC, Stidsholt Roug A. Use of statins and risk of myeloproliferative neoplasms: a Danish nationwide case-control study. Blood Adv. 2023 Jul 25;7(14):3450-3457. doi: 10.1182/bloodadvances.2023009784. PMID: 36877642; PMCID: PMC10362262.

Skov V, Thomassen M, Kjær L, Ellervik C, Larsen MK, Knudsen TA, Kruse TA, Hasselbalch HC. Interferon-alpha2 treatment of patients with polycythemia vera and related neoplasms favorably impacts deregulation of oxidative stress genes and antioxidative defense mechanisms. PLoS One. 2022 Jun 30;17(6):e0270669. doi: 10.1371/journal.pone.0270669. PMID: 35771847; PMCID: PMC9246201.

Găman MA, Mambet C, Neagu AI, Bleotu C, Gurban P, Necula L, Botezatu A, Ataman M, Diaconu CC, Ionescu BO, Ghiaur AE, Tatic A, Coriu D, Găman AM, Diaconu CC. Assessment of Total Antioxidant Capacity, 8-Hydroxy-2'-deoxy-guanosine, the Genetic Landscape, and Their Associations in BCR::ABL-1-Negative Chronic and Blast Phase Myeloproliferative Neoplasms. Int J Mol Sci. 2024 Jun 17;25(12):6652. doi: 10.3390/ijms25126652. PMID: 38928358; PMCID: PMC11203765.

Ma X, Chen C, Xiong H, Fan J, Li Y, Lin H, Xu R, Huang G, Xu B. No association between SOD2 Val16Ala polymorphism and breast cancer susceptibility: a meta-analysis based on 9,710 cases and 11,041 controls. Breast Cancer Res Treat. 2010 Jul;122(2):509-14. doi: 10.1007/s10549-009-0725-2. Epub 2010 Jan 6. PMID: 20052533.

Oberley LW, Buettner GR. Role of superoxide dismutase in cancer: a review. Cancer Res. 1979 Apr;39(4):1141-9. PMID: 217531.

Shiota M, Fujimoto N, Itsumi M, Takeuchi A, Inokuchi J, Tatsugami K, Yokomizo A, Kajioka S, Uchiumi T, Eto M. Gene polymorphisms in antioxidant enzymes correlate with the efficacy of androgen-deprivation therapy for prostate cancer with implications of oxidative stress. Ann Oncol. 2017 Mar 1;28(3):569-575. doi: 10.1093/annonc/mdw646. PMID: 27993795.

Hermouet S, Bigot-Corbel E, Gardie B. Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation. Mediators Inflamm. 2015;2015:145293. doi: 10.1155/2015/145293. Epub 2015 Oct 11. PMID: 26538820; PMCID: PMC4619950.

Kang SW. Superoxide dismutase 2 gene and cancer risk: evidence from an updated meta-analysis. Int J Clin Exp Med. 2015 Sep 15;8(9):14647-55. PMID: 26628947; PMCID: PMC4658836.

How to Cite

1.
Jumaboeva M, Boboev K, Matmurodov R, Jumanazarova S. THE ROLE OF SOD2 GENE ALA16VAL POLYMORPHISM IN THE DEVELOPMENT OF MYELOPROLIFERATIVE NEOPLASIA IN KHOREZM REGION. MSU [Internet]. 2025 Aug. 30 [cited 2025 Sep. 2];(4):11-5. Available from: https://fdoctors.uz/index.php/journal/article/view/176
Views: 3

Most read articles by the same author(s)