РОЛЬ ПОЛИМОРФИЗМА ALA16VAL ГЕНА SOD2 В РАЗВИТИИ МИЕЛОПРОЛИФЕРАТИВНЫХ НЕОПЛАЗИИ В ХОРЕЗМСКОЙ ОБЛАСТИ
Аннотация
Полиморфизмы, такие как Ala16Val в гене SOD2, играют важную роль в регуляции антиоксидантной активности и могут влиять на уровень окислительного стресса в клетках. Увеличение окислительного стресса связано с патологическими процессами, включая канцерогенез.
Цель: оценить влияние аллельных и генотипических вариантов полиморфизма Ala16Val в гене SOD2 на развитие миелопролиферативных неоплазии.
Материалы и методы: У 110 пациентов клинически и генетически подтвержденных случаев Рh–позитивный и Рh–негативный МПН проведена работа по изучению роли полиморфизма Ala16Val гена SOD2 в развитии и прогнозирование клинического течения МПН. Из них, 34 больных (ХМЛ –26, ИП –7, ИТ–1) проживали в неблагоприятных районах Хорезмской области (I–подгруппа) и n=76 пациентов (ХМЛ –40, ИП–24, ИТ–10 и ПМФ–2) в относительно благоприятных регионах республики, в том числе Хорезмской области (II–подгруппа). В качестве контроля использовали образцы ДНК условно–здоровых неродственных лиц узбекской национальности (n=105).
Результаты: Статистические данные свидетельствуют о потенциальной ассоциации между аллелями (χ2=3,9; р=0,05) полиморфизма Ala16Val гена SOD2 и развитием миелопролиферативных неоплазии, аллель Ala играет протективную роль в развитии МНП, а аллель Val патогенную роль, наличие аллеля Val указывает на увеличение риска заболевания. Мутантный гомозиготный генотип Val/Val повышает риск развития МПН у пациентов из неблагоприятных регионов более чем в 2 раза (χ2=4,0; р=0,05; OR=2,4; 95%CI:1,02-5,57).
Ключевые слова:
Об авторах
Список литературы
Misawa K, Yasuda H, Araki M, Ochiai T, Morishita S, Shirane S, Edahiro Y, Gotoh A, Ohsaka A, Komatsu N. Mutational subtypes of JAK2 and CALR correlate with different clinical features in Japanese patients with myeloproliferative neoplasms. Int J Hematol. 2018 Jun;107(6):673-680. doi: 10.1007/s12185-018-2421-7. Epub 2018 Feb 20. PMID: 29464483.
Broz M, Furlan V, Lešnik S, Jukič M, Bren U. The Effect of the Ala16Val Mutation on the Secondary Structure of the Manganese Superoxide Dismutase Mitochondrial Targeting Sequence. Antioxidants (Basel). 2022 Nov 27;11(12):2348. doi: 10.3390/antiox11122348. PMID: 36552556; PMCID: PMC9774195.
Guo H, Chen X, Tian R, Chang J, Li J, Tan Y, Xu Z, Ren F, Zhao J, Pan J, Zhang N, Wang X, He J, Yang W, Wang H. Frequencies, Laboratory Features, and Granulocyte Activation in Chinese Patients with CALR-Mutated Myeloproliferative Neoplasms. PLoS One. 2015 Sep 16;10(9):e0138250. doi: 10.1371/journal.pone.0138250. Erratum in: PLoS One. 2015 Oct 15;10(10):e0141173. doi: 10.1371/journal.pone.0141173. PMID: 26375990; PMCID: PMC4574314.
Ha JS, Kim YK. Calreticulin exon 9 mutations in myeloproliferative neoplasms. Ann Lab Med. 2015 Jan;35(1):22-7. doi: 10.3343/alm.2015.35.1.22. Epub 2014 Dec 8. PMID: 25553276; PMCID: PMC4272961.
Ahmed RZ, Rashid M, Ahmed N, Nadeem M, Shamsi TS. Coexisting JAK2V617F and CALR Exon 9 Mutations in Myeloproliferative Neoplasms - Do They Designate a New Subtype? Asian Pac J Cancer Prev. 2016;17(3):923-6. doi: 10.7314/apjcp.2016.17.3.923. PMID: 27039813.
Li MY, Chao HY, Sun AN, Qiu HY, Jin ZM, Tang XW, Han Y, Fu CC, Chen SN, Wu DP. [Clinical significance of JAK2、CALR and MPL gene mutations in 1 648 Philadelphia chromosome negative myeloproliferative neoplasms patients from a single center]. Zhonghua Xue Ye Xue Za Zhi. 2017 Apr 14;38(4):295-300. Chinese. doi: 10.3760/cma.j.issn.0253-2727.2017.04.007. PMID: 28468090; PMCID: PMC7342731.
Guo H, Chen X, Tian R, Chang J, Li J, Tan Y, Xu Z, Ren F, Zhao J, Pan J, Zhang N, Wang X, He J, Yang W, Wang H. Correction: Frequencies, Laboratory Features, and Granulocyte Activation in Chinese Patients with CALR-Mutated Myeloproliferative Neoplasms. PLoS One. 2015 Oct 15;10(10):e0141173. doi: 10.1371/journal.pone.0141173. Erratum for: PLoS One. 2015 Sep 16;10(9):e0138250. doi: 10.1371/journal.pone.0138250. PMID: 26469690; PMCID: PMC4607294.
Trifa A.P., Lighezan D.L., Jucan C., Tripon F., Arbore D.R., Bojan A., Gligor-Popa Ș., Pop R.M., Dima D., Bănescu C. SH2B3 (LNK) Rs3184504 Polymorphism Is Correlated with JAK2 V617F-Positive Myeloproliferative Neoplasms. Rev. Romana Med. Lab. 2020;28:267–277. doi: 10.2478/rrlm-2020-0025.
Vanni D, Borsani O, Nannya Y, Sant'Antonio E, Trotti C, Casetti IC, Pietra D, Gallì A, Zibellini S, Ferretti VV, Malcovati L, Ogawa S, Arcaini L, Rumi E. Haematological malignancies in relatives of patients affected with myeloproliferative neoplasms. EJHaem. 2022 Mar 24;3(2):475-479. doi: 10.1002/jha2.425. PMID: 35846061; PMCID: PMC9176120.
Coltro G, Loscocco GG, Vannucchi AM. Classical Philadelphia-negative myeloproliferative neoplasms (MPNs): A continuum of different disease entities. Int Rev Cell Mol Biol. 2021;365:1-69. doi: 10.1016/bs.ircmb.2021.09.001. Epub 2021 Sep 28. PMID: 34756241.
Meyer SC, Drexler B, Skoda RC. Myeloproliferative Neoplasien: Update zu Diagnostik und Therapie [Myeloproliferative neoplasms - Update on diagnosis and treatment]. Ther Umsch. 2019;76(9):487-495. German. doi: 10.1024/0040-5930/a001128. PMID: 32157965.
Zeeh FC, Meyer SC. Current Concepts of Pathogenesis and Treatment of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms. Hamostaseologie. 2021 Jun;41(3):197-205. doi: 10.1055/a-1447-6667. Epub 2021 Jun 30. PMID: 34192778.
Tuyet Kristensen D, Kisbye Øvlisen A, Hjort Kyneb Jakobsen L, Tang Severinsen M, Hannig LH, Starklint J, Hagemann Hilsøe M, Pommer Vallentin A, Brabrand M, Hasselbalch HC, El-Galaly TC, Stidsholt Roug A. Use of statins and risk of myeloproliferative neoplasms: a Danish nationwide case-control study. Blood Adv. 2023 Jul 25;7(14):3450-3457. doi: 10.1182/bloodadvances.2023009784. PMID: 36877642; PMCID: PMC10362262.
Skov V, Thomassen M, Kjær L, Ellervik C, Larsen MK, Knudsen TA, Kruse TA, Hasselbalch HC. Interferon-alpha2 treatment of patients with polycythemia vera and related neoplasms favorably impacts deregulation of oxidative stress genes and antioxidative defense mechanisms. PLoS One. 2022 Jun 30;17(6):e0270669. doi: 10.1371/journal.pone.0270669. PMID: 35771847; PMCID: PMC9246201.
Găman MA, Mambet C, Neagu AI, Bleotu C, Gurban P, Necula L, Botezatu A, Ataman M, Diaconu CC, Ionescu BO, Ghiaur AE, Tatic A, Coriu D, Găman AM, Diaconu CC. Assessment of Total Antioxidant Capacity, 8-Hydroxy-2'-deoxy-guanosine, the Genetic Landscape, and Their Associations in BCR::ABL-1-Negative Chronic and Blast Phase Myeloproliferative Neoplasms. Int J Mol Sci. 2024 Jun 17;25(12):6652. doi: 10.3390/ijms25126652. PMID: 38928358; PMCID: PMC11203765.
Ma X, Chen C, Xiong H, Fan J, Li Y, Lin H, Xu R, Huang G, Xu B. No association between SOD2 Val16Ala polymorphism and breast cancer susceptibility: a meta-analysis based on 9,710 cases and 11,041 controls. Breast Cancer Res Treat. 2010 Jul;122(2):509-14. doi: 10.1007/s10549-009-0725-2. Epub 2010 Jan 6. PMID: 20052533.
Oberley LW, Buettner GR. Role of superoxide dismutase in cancer: a review. Cancer Res. 1979 Apr;39(4):1141-9. PMID: 217531.
Shiota M, Fujimoto N, Itsumi M, Takeuchi A, Inokuchi J, Tatsugami K, Yokomizo A, Kajioka S, Uchiumi T, Eto M. Gene polymorphisms in antioxidant enzymes correlate with the efficacy of androgen-deprivation therapy for prostate cancer with implications of oxidative stress. Ann Oncol. 2017 Mar 1;28(3):569-575. doi: 10.1093/annonc/mdw646. PMID: 27993795.
Hermouet S, Bigot-Corbel E, Gardie B. Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation. Mediators Inflamm. 2015;2015:145293. doi: 10.1155/2015/145293. Epub 2015 Oct 11. PMID: 26538820; PMCID: PMC4619950.
Kang SW. Superoxide dismutase 2 gene and cancer risk: evidence from an updated meta-analysis. Int J Clin Exp Med. 2015 Sep 15;8(9):14647-55. PMID: 26628947; PMCID: PMC4658836.
Как цитировать

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.