CLINICAL AND PATHOGENETIC FEATURES OF MICROCIRCULATORY CHANGES IN BRONCHOPULMONARY DISEASES IN CHILDREN
Abstract
Relevance. Inflammatory bronchopulmonary diseases in children, such as bronchitis, pneumonia, and bronchiolitis, remain among the most urgent problems in modern pediatrics. Microcirculatory dysfunction plays a central role in their pathogenesis. Impairment of the microcirculation not only disrupts alveolar gas exchange but also affects tissue trophic supply. Contemporary research highlights a close association between this dysfunction and the imbalance of inflammatory mediators — interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and the anti-inflammatory cytokine interleukin-10 (IL-10). These mediators alter endothelial cell function, increase capillary wall permeability, cause degradation of the glycocalyx structure, and consequently lead to impaired microvascular perfusion. Objective. The aim of this study was to identify the main pathophysiological mechanisms of microcirculatory dysfunction in inflammatory bronchopulmonary diseases in children, to assess the relationship between the levels of inflammatory cytokines (IL-1β, IL-6, TNF-α, IL-8, IL-10) and microcirculatory parameters, and to determine their clinical significance as prognostic biomarkers. Materials and Methods. To evaluate the state of microcirculation in pediatric patients, a comprehensive set of instrumental and laboratory diagnostic methods was applied. Capillaroscopy was used to assess the morphofunctional state of nail-bed capillaries, pulse oximetry was employed to determine arterial oxygenation levels, and blood lactate concentration served as a marker of metabolic hypoxia. Additionally, hemostasiogram parameters and microperfusion indices were calculated. The levels of inflammatory mediators were determined by the enzyme-linked immunosorbent assay (ELISA), followed by statistical correlation analysis to examine interrelations between cytokine and microcirculatory indicators. Results and Discussion. The analysis revealed a significant increase in inflammatory cytokine levels among children with bronchopulmonary diseases, which contributed to the development of endothelial dysfunction. Increased capillary wall permeability, degradation of the glycocalyx, and enhanced interstitial edema led to a decrease in microcirculatory blood flow. These changes were accompanied by impaired blood rheology, reduced erythrocyte deformability, and microthrombus formation. A statistically significant positive correlation (r = 0.68–0.74; p < 0.01) was established between IL-6 and TNF-α levels, on the one hand, and lactate concentration and capillary perfusion indices, on the other. This relationship was found to be a reliable diagnostic biomarker for predicting severe courses of pneumonia and bronchiolitis. Particularly in young children, the morphofunctional and metabolic immaturity of adaptive mechanisms leads to rapid transition of microcirculatory disorders into a hypoxic-decompensatory stage. Conclusion. The obtained results confirm that microcirculatory dysfunction represents a key pathogenetic link in the development of inflammatory bronchopulmonary diseases in children. Early diagnosis and complex correction of these disorders can reduce disease severity, prevent hypoxic complications, and improve clinical outcomes. In the future, integrating microcirculatory markers, inflammatory cytokines, and oxidative stress indicators into a unified monitoring system may provide a basis for optimizing diagnostic and therapeutic strategies in pediatric practice.
Keywords:
About the Authors
List of references
Буряк О.Г., Нечитайло Ю.М. Аналіз стану мікроциркуляторного русла у дітей з гострими бронхітами. Child’s Health. 2023;18(7):501–505.
Гогин Е.Е. Нарушения микроциркуляции при гипертонической болезни, атеросклерозе, сахарном диабете. Терапевтический архив (Ter Arkhiv). 2011;83(4).
Дорохов Н.А., Скударнов Е.В., Антропов Д.А. Особенности реакции системы коагуляционного звена гемостаза у детей с пневмониями. Acta Biomedica Scientifica. 2016;1(1):12–15.
Ефимцева Е.А. Особенности микроциркуляции бульбарной конъюнктивы у новорожденных детей с гипоксически-ишемическим поражением центральной нервной системы [автореф. дис.]. Москва; 2009. 29 с.
Козлов В.И., Азизов Г.А., Гурова О.А., Литвин Ф.Б. Лазерная допплеровская флоуметрия в оценке состояния и расстройств микроциркуляции. Методические рекомендации. Москва: ГНЦ Лазерной Медицины; 2012. Available from: [http://angiologia.ru/specialist/cathedra/recommendations/ 2012/001.pdf](http://angiologia.ru/specialist/cathedra/recommendations/2012/001.pdf)
Крупаткин А.И., Сидоров В.В. Глава 3 (3.3): Исследование микроциркуляторно -тканевых систем [Internet]. Москва: LAZMA; 2016 [cited 2025 Oct 30]. Available from:[https://www.lazma.ru/_files/File/books/Chapter_3
Москвин С.В. Основы лазерной терапии [Internet]. Москва: Гос. Науч. Центр Лазерной Медицины; 2016. Available from: [https://www.matrixmed.ru/assets/files/31/Moskvin_OLT-2016.pdf](https://www.matrixmed.ru/assets/files/31/Moskvin_OLT-2016.pdf)
Aksu U., Goswami N., Demirci C. et al. Microcirculation: Current Perspective in Diagnostics, Imaging and Clinical Applications. J Clin Med.2024;13(22):6762.
Bottari G., Damiani E., Confalone V. et al. Microvascular dysfunction in pediatric patients with SARS-CoV-2 pneumonia: report of three severe cases. Microvasc Res.2022;141:104312.
Colantuoni A, Martini R, Caprari P, et al. COVID-19 sepsis and microcirculation dysfunction. Front Physiol. 2020;11:747.
Guerci P, Ergin B, Uz Z, Ince Y, Westphal M, Heger M, et al. Glycocalyx degradation is independent of vascular barrier permeability increase in nontraumatic hemorrhagic shock in rats. Anesth Analg. 2019;129(2):598–607.
Ergin B, Heger M, Kandil A, Demirci-Tansel C, Ince C. Mycophenolate mofetil improves renal haemodynamics, microvascular oxygenation, and inflammation in a rat model of supra-renal aortic clamping-mediated renal ischaemia reperfusion injury. Clin Exp Pharmacol Physiol. 2017;44(2):294–304.
Ince C., Mayeux P.R., Nguyen T., Gomez H., Kellum J.A., Ospina-Tascón G.A., et al. The endothelium in sepsis. .Shock. 2016;45(3):259–270.
Low D.A., Jones H., Cable N.T., Alexander L.M., Kenney W.L.. Historical reviews of the assessment of human cardiovascular function: interrogation and understanding of the control of skin blood flow. Eur J Appl Physiol. 2020;120(1):1–16.
Natalello G., De Luca G., Gigante L., et al. Nailfold capillaroscopy findings in patients with coronavirus disease 2019: broadening the spectrum of COVID-19 microvascular involvement. Microvasc Res. 2021;133:104071.
Post E.H., Kellum J.A., Bellomo R., Vincent J.L. Renal perfusion in sepsis: from macro- to microcirculation. Kidney Int. 2017;91(1):45–60.
Uchimido R.., Schmidt E.P., Shapiro N.I. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care. 2019;23(1):16.
Weinbaum S., Tarbell J.M., Damiano E.R. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007;9:121–167.
Welch W.J. Intrarenal oxygen and hypertension. Clin Exp Pharmacol Physiol. 2006;33(10):1002–1005.
Zafrani L., Ergin B., Kapucu A., Ince C. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats. Crit Care. 2016;20(1):406.
Song J., Hou Y., Zhan J., et al. Clinical value of coagulation function indicators in children with severe pneumonia. Front Pediatr. 2024;12:120–130.
Li T., Qin Y., Feng Y., et al. Evaluation of variation in coagulation among children with Mycoplasma pneumoniae pneumonia. J Med Sci. 2017;45(6):1042–1048.
Edul V.S., et al. Microcirculation alterations in severe COVID-19 pneumonia. Intensive Care Med. 2021;47(11):1324–1334.
Hao M., Yang J., Chen T., et al. Correlation between platelet miRNA expression and micro-thrombosis in pediatric pneumonia. Pediatr Res. 2022;91(4):845–853.
Meyer Sauteur P.M., Krautter S., Ambroggio L., et al. Childhood community-acquired pneumonia: etiological and clinical challenges. Eur J Pediatr. 2024;183:1129–1136.
Ojuawo O., et al. Childhood pneumonia diagnostics: a narrative review. Trop Med Infect Dis. 2022;7(12):345.
Lyons R., et al. Pneumonia in children: symptoms, pathophysiology and microvascular implications. J Pediatr Respir Med. 2023;8(2):58–67.
Chen Z.M., et al. Diagnosis and treatment of pediatric respiratory infections caused by novel coronavirus and complications including coagulation dysfunction. Int J Infect Dis.2020;94:255–262.
Yalaki Z., Yalaki O., Aydogan Z., et al. Evaluation of anticoagulant proteins and fibrinolytic-system markers in children with pneumonia. J Pediatr Res. 2019;6(1):104–110.
Yunhong M.A., Wang S., Luo F., et al. Clinical study on coagulation function of children with Mycoplasma pneumoniae lobar pneumonia. Chinese Pediatr Integr Trad West Med. 2024;16(3):234–238.
Jani V.P., Pepin K.I., et al. Implications of microvascular dysfunction and nitric oxide in severe COVID-19 infection. Am J Physiol Lung Cell Mol Physiol. 2022;322(1):L1–L12.
How to Cite

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.